The weak topology of locally convex spaces and the weak-* topology of their duals

نویسنده

  • Jordan Bell
چکیده

These notes give a summary of results that everyone who does work in functional analysis should know about the weak topology on locally convex topological vector spaces and the weak-* topology on their dual spaces. The most striking of the results we prove is Theorem 9, which shows that a subset of a locally convex space is bounded if and only if it is weakly bounded. It is straightforward to prove that if a set is bounded then it is weakly bounded, but to prove that if a set is weakly bounded then it is bounded we use the Hahn-Banach separation theorem, the Banach-Alaoglu theorem, and the uniform boundedness principle. If X is a topological vector space then we will see that the weak topology on it is coarser than the original topology: any set that is open in the original topology is open in the weak topology. From this it follows that it is easier for a sequence to converge in the weak topology than in the original topology: for a sequence to converge to a point means that it is eventually contained in every neighborhood of the point, and a point has fewer neighborhoods in the weak topology than it does in the original topology. The weak topology encodes information we may care about, and we may be able to establish that certain sets are compact in the weak topology that are not compact in the original topology. In these notes I first define the weak topology on a topological vector space X, and show that if X is locally convex then X with the weak topology is also a locally convex space. Indeed a normed space is locally convex, but there are function spaces that we care about that are not normed spaces. For example, the set of holomorphic functions on the open unit disc is a Fréchet space that is not normable. If U is an open subset of R, then C(U) is a Fréchet space that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M-FUZZIFYING TOPOLOGICAL CONVEX SPACES

The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...

متن کامل

SOME FIXED POINT THEOREMS IN LOCALLY CONVEX TOPOLOGY GENERATED BY FUZZY N-NORMED SPACES

 The main purpose of this paper is to study the existence of afixed point in locally convex topology generated by fuzzy n-normed spaces.We prove our main results, a fixed point theorem for a self mapping and acommon xed point theorem for a pair of weakly compatible mappings inlocally convex topology generated by fuzzy n-normed spaces. Also we givesome remarks in locally convex topology generate...

متن کامل

Weak hyper semi-quantales and weak hypervalued topological spaces

The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...

متن کامل

Fuzzy Topology Generated by Fuzzy Norm

In the current paper, consider the fuzzy normed linear space $(X,N)$ which is defined by Bag and Samanta. First, we construct a new fuzzy topology on this space and show that these spaces are Hausdorff locally convex fuzzy topological vector space. Some necessary and sufficient conditions are established to illustrate that the presented fuzzy topology is equivalent to two previously studied fuz...

متن کامل

Strongly k-spaces

‎In this paper‎, ‎we introduce the notion of strongly $k-$spaces (with the weak (=finest) pre-topology generated by their strongly compact subsets)‎. ‎We characterize the strongly $k-$spaces and investigate the relationships between preclosedness‎, ‎locally strongly compactness‎, ‎pre-first countableness and being strongly $k-$space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014